Mechanical Function of Lignin and Hemicelluloses in Wood Cell Wall Revealed with Microtension of Single Wood Fiber
نویسندگان
چکیده
Chinese Fir wood (Cunninghamia lanceolata (Lamb.) Hook) was subjected to extraction treatments with sodium chlorite (NaClO2) for delignification, as well as with sodium hydroxide (NaOH) at different concentrations for extraction of hemicelluloses. The wood was examined using a Fourier Transform Infrared (FT-IR) spectrometer and microtension technique to track changes in the chemical and the micromechanical properties of the cell wall. The results of the microtensile tests indicated that the hemicelluloses caused more damage to the mechanical properties of the cell wall than lignin. The micromechanical properties that occurred with degradation of chemical components underlined the key role of hemicelluloses in maintaining the integrity of the cell wall.
منابع مشابه
Acetylation of wood – A review
Wood is a porous three dimensional, hydroscopic, viscoelastic, anisotropic bio-polymer composite composed of an interconnecting matrix of cellulose, hemicelluloses and lignin with minor amounts of inorganic elements and organic extractives. Some, but not all, of the cell wall polymer hydroxyl groups are accessible to moisture and these accessible hydroxyls form hydrogen bonds with water. As the...
متن کاملThe Wood Cell Wall at the Ultrastructural Scale – Formation and Topochemical Organization
The macromolecular organization of the secondary wall of the cells from tree xylem is in large part responsible for the mechanical and physiological properties of wood. Modeling secondary walls of wood is difficult because information about their macromolecular architecture at the ultrastructural scale is missing. Numerous microscopic studies have provided views of the lignocellulosic composite...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملMicrostructural and Topochemical Characterization of Thermally Modified Poplar (Populus cathayaha) Cell Wall
Although many studies have been conducted on the wood property and chemical changes caused by thermal modification, little has been reported on the microstructural and topochemical changes occurring in the cell wall during heat treatment. In this study, poplar (Populus cathayaha) was treated within a temperature range from 180 to 220 °C for 4 h. Chemical analyses by Fourier transform infrared s...
متن کاملRaman Imaging of Lignocellulosic Feedstock
The main structural plant cell wall polymers cellulose, hemicelluloses, and lignin rank amongst the most abundant biopolymers in Earth’s carbon cycle. These three polymers form the lignocellulose complex and constitute the bulk of the cell wall with 40-50%, 10-40% and 5-30% of biomass by weight, respectively [1, 2]. Its highly ordered structure of cellulose microfibril aggregates, embedded in a...
متن کامل